NAG Toolbox for MATLAB

f08na

1 Purpose

f08na computes the eigenvalues and, optionally, the left and/or right eigenvectors for an n by n real nonsymmetric matrix A.

2 Syntax

3 Description

The right eigenvector v_i of A satisfies

$$Av_j = \lambda_j v_j$$

where λ_j is the jth eigenvalue of A. The left eigenvector u_j of A satisfies

$$u_i^{\mathrm{H}} A = \lambda_i u_i^{\mathrm{H}}$$

where u_i^{H} denotes the conjugate transpose of u_i .

The matrix A is first reduced to upper Hessenberg form by means of orthogonal similarity transformations, and the QR algorithm is then used to further reduce the matrix to upper quasi-triangular Schur form, T, with 1 by 1 and 2 by 2 blocks on the main diagonal. The eigenvalues are computed from T, the 2 by 2 blocks corresponding to complex conjugate pairs and, optionally, the eigenvectors of T are computed and backtransformed to the eigenvectors of A.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A, Hammarling S, McKenney A and Sorensen D 1999 *LAPACK Users' Guide* (3rd Edition) SIAM, Philadelphia URL: http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F 1996 Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

5 Parameters

5.1 Compulsory Input Parameters

1: jobvl - string

If jobvl = 'N', the left eigenvectors of A are not computed.

If jobvl = 'V', the left eigenvectors of A are computed.

Constraint: jobvl = 'N' or 'V'.

2: **jobvr – string**

If jobvr = 'N', the right eigenvectors of **a** are not computed.

If jobvr = 'V', the right eigenvectors of **a** are computed.

Constraint: jobvr = 'N' or 'V'.

[NP3663/21] f08na.1

f08na NAG Toolbox Manual

3: a(lda,*) - double array

The first dimension of the array \mathbf{a} must be at least $\max(1, \mathbf{n})$

The second dimension of the array must be at least $max(1, \mathbf{n})$

The n by n matrix A.

5.2 Optional Input Parameters

1: n - int32 scalar

Default: The first dimension of the array **a** and the second dimension of the array **a**. (An error is raised if these dimensions are not equal.)

n, the order of the matrix A.

Constraint: $\mathbf{n} \geq 0$.

5.3 Input Parameters Omitted from the MATLAB Interface

lda, ldvl, ldvr, work, lwork

5.4 Output Parameters

1: a(lda,*) - double array

The first dimension of the array **a** must be at least $max(1, \mathbf{n})$

The second dimension of the array must be at least $max(1, \mathbf{n})$

a has been overwritten.

- 2: wr(*) double array
- 3: wi(*) double array

Note: the dimension of the arrays wr and wi must be at least $max(1, \mathbf{n})$.

wr and wi contain the real and imaginary parts, respectively, of the computed eigenvalues. Complex conjugate pairs of eigenvalues appear consecutively with the eigenvalue having the positive imaginary part first.

4: vl(ldvl,*) - double array

The first dimension, ldvl, of the array vl must satisfy

```
if jobvl = 'V', ldvl \ge max(1, n); ldvl \ge 1 otherwise.
```

The second dimension of the array must be at least $max(1, \mathbf{n})$ if jobvl = 'V', and at least 1 otherwise

If $\mathbf{jobvl} = 'V'$, the left eigenvectors u_j are stored one after another in the columns of \mathbf{vl} , in the same order as their corresponding eigenvalues.

If jobvl = 'N', vl is not referenced.

If the *j*th eigenvalue is real, then $u_i = \mathbf{vl}(:,j)$, the *j*th column of \mathbf{vl} .

If the *j*th and (j+1)st eigenvalues form a complex conjugate pair, then $u_j = \mathbf{vl}(:,j) + i \times \mathbf{vl}(:,j+1)$ and $u_{j+1} = \mathbf{vl}(:,j) - i \times \mathbf{vl}(:,j+1)$.

5: vr(ldvr,*) - double array

The first dimension, ldvr, of the array vr must satisfy

```
if jobvr = 'V', ldvr \ge max(1, n); ldvr \ge 1 otherwise.
```

f08na.2 [NP3663/21]

The second dimension of the array must be at least $max(1, \mathbf{n})$ if $\mathbf{jobvr} = 'V'$, and at least 1 otherwise

If **jobvr** = 'V', the right eigenvectors v_j are stored one after another in the columns of **vr**, in the same order as their corresponding eigenvalues.

If jobvr = 'N', vr is not referenced.

If the *j*th eigenvalue is real, then $v_i = \mathbf{vr}(:,j)$, the *j*th column of \mathbf{vr} .

If the *j*th and (j+1)st eigenvalues form a complex conjugate pair, then $v_j = \mathbf{vr}(:,j) + i \times \mathbf{vr}(:,j+1)$ and $v_{j+1} = \mathbf{vr}(:,j) - i \times \mathbf{vr}(:,j+1)$.

6: info – int32 scalar

info = 0 unless the function detects an error (see Section 6).

6 Error Indicators and Warnings

Errors or warnings detected by the function:

info = -i

If info = -i, parameter i had an illegal value on entry. The parameters are numbered as follows:

1: jobvl, 2: jobvr, 3: n, 4: a, 5: lda, 6: wr, 7: wi, 8: vl, 9: ldvl, 10: vr, 11: ldvr, 12: work, 13: lwork, 14: info.

It is possible that **info** refers to a parameter that is omitted from the MATLAB interface. This usually indicates that an error in one of the other input parameters has caused an incorrect value to be inferred.

info > 0

If **info** = i, the QR algorithm failed to compute all the eigenvalues, and no eigenvectors have been computed; elements $i + 1 : \mathbf{n}$ of \mathbf{wr} and \mathbf{wi} contain eigenvalues which have converged.

7 Accuracy

The computed eigenvalues and eigenvectors are exact for a nearby matrix (A + E), where

$$||E||_2 = O(\epsilon)||A||_2$$

and ϵ is the *machine precision*. See Section 4.8 of Anderson *et al.* 1999 for further details.

8 Further Comments

Each eigenvector is normalized to have Euclidean norm equal to unity and the element of largest absolute value real and positive.

The total number of floating-point operations is proportional to n^3 .

The complex analogue of this function is f08nn.

9 Example

[NP3663/21] f08na.3

f08na NAG Toolbox Manual

```
aOut =
  -0.1280
          -0.1651 -0.3690
                             0.2446
   0.6753
          -0.1280 -0.1836
                             -0.1114
               0 -0.0509
       0
                             0.1800
                     0
        0
                0
                              0.4569
wr =
  -0.1280
  -0.1280
  -0.0509
   0.4569
wi =
   0.3339
  -0.3339
        0
        0
v1 =
    0
vr =
  -0.2708
           0.3271
                   -0.3282
                             -0.6887
   0.1909
                   -0.3848
           -0.3732
                             -0.6091
   0.2941
           -0.2549
                   -0.5282
                             0.3853
               0
                   -0.6820
                             -0.0788
   0.7018
info =
         0
```

f08na.4 (last) [NP3663/21]